КСВ-метры UT1МА » Сайт "CqR3D.RU"
КСВ-метры UT1МА
Две конструкции КСВ-метра UT1MA, о которых пойдет речь ниже, имеют практически одинаковую схему, но разное исполнение и обеспечивают хорошую точность измерений во всей полосе частот KB диапазона. В первом варианте (КМА - 01) высокочастотный датчик и индикаторная часть раздельные. Датчик имеет входной и выходной коаксиальные разъемы и может быть установлен в любом месте фидерного тракта. Он соединен с индикатором трехпроводным кабелем любой длины. Во втором варианте (КМА - 02) оба узла размещены в одном корпусе.

 
Схема КСВ - метра приведена на рис. 7 и отличается она от базовой схемы рис. 2 наличием трех цепей коррекции. Рассмотрим эти отличия.

Верхнее плечо емкостного делителя С1 выполнено из двух одинаковых постоянных конденсаторов С1 = С1' + С1", подключенных соответственно к входному и выходному разъемам. Как отмечалось в первой части статьи, фазы напряжений на этих разъемах несколько различаются, и при таком включении фаза Uc усредняется и сближается с фазой UT. Это улучшает балансировку прибора.
За счет введения катушки L1 сопротивление верхнего плеча емкостного делителя становится частотно-зависимым, что позволяет выровнять балансировку на верхнем краю рабочего диапазона (21...30 МГц).
Подбором резистора R2 (т. е. постоянной времени цепочки R2C2) можно компенсировать разбалансировку, вызванную спадом напряжения UT и его фазовым сдвигом на нижнем краю диапазона (1,8...3,5 МГц).
Кроме того, балансировка осуществляется подстроечным конденсатором, включенным в нижнее плечо делителя. Это упрощает монтаж и позволяет применить маломощный малогабаритный подстроечный конденсатор.

В конструкции предусмотрена возможность измерения мощности падающей и отраженной волн. Для этого переключателем SA2 в цепь индикатора вместо переменного калибровочного резистора R4 вводится подстроечный резистор R5, которым устанавливается нужный предел измеряемой мощности.

Применение оптимальной коррекции и рациональная конструкция прибора позволили получить коэффициент направленности D в пределах 35...45 дБ в полосе частот 1,8...30 МГц.

В КСВ - метрах применены следующие детали.

Вторичная обмотка трансформатора Т1 содержит 2 x 10 витков (намотка в 2 провода) проводом 0,35 ПЭВ, размещенных равномерно на феррито-вом кольце К12 x 6 x 4 проницаемостью около 400 (измеренная индуктивность ~ 90 мкГн).

Резистор R1 — 68 Ом МЛТ, желательно без винтовой канавки на теле резистора. При проходящей мощности менее 250 Вт достаточно установить резистор с мощностью рассеивания 1 Вт, при мощности 500 Вт — 2 Вт. При мощности 1 кВт резистор R1 можно составить из двух параллельно включенных резисторов сопротивлением 130 Ом и мощностью 2 Вт каждый. Впрочем, если КС В - метр проектируется под высокий уровень мощности, есть смысл увеличить в два раза число витков вторичной обмотки Т1 (до 2 x 20 витков). Это позволит в 4 раза уменьшить требуемую мощность рассеивания резистора R1 (при этом конденсатор С2 должен иметь вдвое большую емкость).

Емкость каждого из конденсаторов С Г и С1" может быть в пределах 2,4...3 пФ (КТ, КТК, КД на рабочее напряжение 500 В при Р ? 1 кВт и 200...250 В при меньшей мощности). Конденсаторы С2 — на любое напряжение (КТК или другие безындуктивные, один или 2 — 3 параллельно), конденсатор СЗ - малогабаритный подстроечный с пределами изменения емкости 3...20 пФ (КПК - М, КТ - 4). Требуемая емкость конденсатора С2 зависит от суммарной величины емкости верхнего плеча емкостного делителя, в которую входит помимо конденсаторов С' + С1" еще и емкость С0 ~ 1 пФ между вторичной обмоткой трансформатора Т1 и центральным проводником. Общая емкость нижнего плеча — С2 плюс СЗ при R1 = 68 Ом должна быть примерно в 30 раз больше емкости верхнего. Диоды VD1 и VD2 — Д311, конденсаторы С4, С5 и С6 — емкостью 0,0033... 0,01 мкФ (КМ или другие высокочастотные), индикатор РА1 — М2003 с током полного отклонения 100 мкА, переменный резистор R4 — 150 кОм СП - 4 - 2м, подстроечный резистор R4 — 150 кОм. Резистор R3 имеет сопротивление 10 кОм — он предохраняет индикатор от возможной перегрузки.

Величину корректирующей индуктивности L1 можно определить так. При балансировке прибора (без L1 ) надо отметить положения ротора подстроеч-ного конденсатора СЗ на частотах 14 и 29 МГц, затем выпаять его и измерить емкость в обоих отмеченных положениях. Допустим, для верхней частоты емкость оказалась меньше на 5 пФ, а общая емкость нижнего плеча делителя — около 130 пФ, т. е. разница составляет 5/130 или около 4 %. Следовательно, для частотного выравнивания нужно на частоте 29 МГц уменьшить сопротивление верхнего плеча также на ~ 4 %. К примеру, при С1 + С0 = 5 пФ емкостное сопротивление Хс = 1/2?fС ? j1100 Ом, соответственно, Xc ? j44 Ом и L1 = XL1 / 2?f = = 0,24мкГн.

В авторских приборах катушка L1 имела 8...9 витков проводом ПЭЛШО 0,29. Внутренний диаметр катушки — 5 мм, намотка плотная с последующей пропиткой клеем БФ - 2. Окончательное число витков уточняется после ее установки на место. Первоначально производят балансировку на частоте 14 МГц, затем устанавливают частоту 29 МГц и подбирают такое число витков катушки L1, при котором схема балансируется на обеих частотах при одном и том же положении подстроечника СЗ.

После достижения хорошей балансировки на средних и верхних частотах устанавливают частоту 1,8 МГц, на место резистора R2 временно впаивают переменный резистор сопротивлением 15...20 кОм и находят значение, при котором UOCT минимально. Значение сопротивления резистора R2 зависит от индуктивности вторичной обмотки Т1 и лежит в пределах 5...20 кОм для ее индуктивности 40...200 мкГн (большие значения сопротивления для большей индуктивности).

В радиолюбительских условиях наиболее часто в индикаторе КСВ-метра используют микроамперметр с линейной шкалой и отсчет ведут по формуле КСВ = (Iпад + Iотр) / (Iпад -Iотр), где I в микроамперах — показания индикатора в режимах "падающая" и "отраженная" соответственно. При этом не учитывается ошибка из-за нелинейности начального участка ВАХ диодов. Проверка с помощью нагрузок разной величины на частоте 7 МГц показала, что при мощности около 100 Вт показания индикатора были в среднем на одно деление (1 мкА) меньше реальных значений, при 25 Вт — меньше на 2,5...3 мкА, а при 10 Вт — на 4 мкА. Отсюда простая рекомендация: для 100-ваттного варианта — заранее сместить начальное (нулевое) положение стрелки прибора на одно деление вверх, а при использовании 10 Вт (например, при настройке антенны) прибавлять к отсчету по шкале е положении "отраженная" еще 4 мкА. Пример — отсчеты "падающая/отраженная" соответственно 100/16 мкА, а правильный КСВ будет (100 + 20) / (100 - 20) = 1,5. При значительной мощности — 500 Вт и более — в указанной коррекции нет необходимости.

Следует заметить, что все типы любительских КСВ-метров (на токовом трансформаторе, мостовые, на направленных ответвителях) дают значения коэффициента отражения r, а величину КСВ затем приходится вычислять. Между тем именно r является основным показателем степени согласования, а КСВ — это показатель производный. Подтверждением сказанного может быть тот факт, что в электросвязи степень согласования характеризуется затуханием несогласованности (тот же r, только в децибелах). В дорогих фирменных приборах также предусмотрен отсчет r под названием return loss (обратные потери).

Это замечание сделано для того, чтобы подчеркнуть следующий факт. В любительских условиях достаточно сложно изготовить шкалу индикатора в величинах КСВ, а вот r можно отсчитывать непосредственно по линейной шкале.

Что будет, если в качестве детекторов применить кремниевые диоды? Если у германиевого диода при комнатной температуре напряжение отсечки, при котором ток через диод всего 0,2...0,3 мкА, составляет около 0,045 В, то у кремниевого уже 0,3 В. Следовательно, чтобы сохранить точность отсчета при переходе на кремниевые диоды, необходимо более чем в 6 раз поднять уровни напряжений Uc и UT (!). В эксперименте, при замене диодов Д311 на КД522 при Р = 100 Вт, нагрузке Zн = 75 Ом и тех же Uc и UT, получились цифры: до замены— 100/19 и КСВ=1,48, после замены — 100/12 и расчетный КСВ=1,27. Применение схемы удвоения на диодах КД522 дало еще худший результат — 100/11 и расчетный КСВ = 1,25.

Корпус датчика в раздельном варианте может быть изготовлен из меди, алюминия или спаян из пластинок двусторонне фольгированного стеклотекстолита толщиной 1,5...2 мм. Эскиз такой конструкции приведен на рис. 8,а. Корпус состоит из двух отсеков, в одном друг напротив друга расположены ВЧ разъемы (СР - 50 или SO - 239 с фланцами размерами 25x25 мм ), перемычка из провода диаметром 1,4 мм в полиэтиленовой изоляции диаметром 4,8 мм (от кабеля РК50 - 4), токовый трансформатор Т1, конденсаторы емкостного делителя и компенсационная катушка L1, в другом — резисторы R1, R2, диоды, подстроечный и блокировочные конденсаторы и малогабаритный НЧ разъем. Выводы Т1 минимальной длины. Точка соединения конденсаторов С1' и С1" с катушкой L1 "висит в воздухе", а точка соединения конденсаторов С4 и С5 среднего вывода разъема ХЗ соединена с корпусом прибора.

 

Перегородки 2, 3 и 5 имеют одинаковые размеры. В перегородке 2 отверстий нет, а в перегородке 5 отверстие делают под конкретный НЧ разъем, через который будет подключаться индикаторный блок. В средней перемычке 3 (рис. 8,б) вокруг трех отверстий с обеих сторон выбирают фольгу, а в отверстия устанавливают три проходных проводника (например, латунные винты М2 и МЗ). Эскизы боковин 1 и 4 приведены на рис. 8,в. Пунктирными линиями показаны места соединения перед пайкой, которая для большей прочности и обеспечения электрического контакта производится с обеих сторон.

Конструкция индикаторного блока без особенностей и здесь не рассматривается.

 

ВЧ датчик второго варианта КСВ - метра монтируется на съемной задней стенке (медь, алюминий, латунь) металлического корпуса КСВ-метра (рис. 9). В отличие от первого варианта все детали (кроме Т1 и разъемов XW1 и XW2) смонтированы на печатной плате (рис. 10), туда же припаян НЧ разъем типа межблочных телевизионных. Конденсаторы С1' и С1" одним выводом припаяны к контактной площадке на печатной плате, а другими концами — к ВЧ разъемам. Элементы С2, СЗ и L1 расположены со стороны фольги. Ограничивающий резистор R3 перенесен на плату (R3' и R3" показаны на схеме пунктиром). Диоды VD1 и VD2 установлены вертикально. Плата крепится к панели между ВЧ разъемами с помощью небольших напаяных уголков из меди толщиной 0,5...1 мм (место пайки показано на рис. 10 пунктиром). Датчик желательно накрыть экраном. Конструкция индикатора — без особенностей.

Для настройки и проверки КСВ - мет-ра необходим образцовый нагрузочный резистор 50 Ом (эквивалент антенны) мощностью 50...100 Вт. Одна из возможных радиолюбительских конструкций показана на рис. 11. В ней используется распространенный резистор ТВО сопротивлением 51 Ом и мощностью рассеивания 60 Вт (прямоугольник размерами 45 x 25 x 180 мм).

 

Внутри керамического корпуса резистора находится длинный цилиндрический канал, заполненный резистивным веществом. Резистор должен быть плотно прижат к днищу алюминиевого кожуха. Это улучшает отвод тепла и создает распределенную емкость, улучшающую широко-полосность. С помощью дополнительных резисторов с мощностью рассеивания 2 Вт входное сопротивление нагрузки устанавливают в пределах 49,9...50,1 Ом. С небольшим корректирующим конденсатором на входе (~ 10 пФ) удается на базе этого резистора получить нагрузку с КСВ не хуже 1,05 в полосе частот до 30 МГц. Отличные нагрузки получаются из специальных малогабаритных резисторов типа Р1 - 3 номиналом 49,9 Ом, выдерживающих значительную мощность при использовании внешнего радиатора.

Были проведены сравнительные испытания КСВ-метров разных фирм и приборов, описанных в этой статье. Проверка заключалась в том, что к передатчику с выходной мощностью около 100 Вт через испытуемый 50-омный КСВ - метр подключалась несогласованная нагрузка 75 Ом (эквивалент антенны на мощность 100 Вт заводского изготовления) и производилось два измерения. Одно — при подключении коротким кабелем РК50 длиной 10 см, другое — через кабель РК50 длиной ~ 0,25?. Чем меньше разброс показаний, тем достовернее прибор.

При частоте 29 МГц получены следующие значения КСВ:

DRAKE WH - 7.................1,46/1,54
DIAMOND SX - 100..........1,3/1,7
ALAN KW - 220.............1,3/1,7
ROGER RSM-600.........1,35/1,65
UT1MA..........................1,44/1,5

С нагрузкой 50 Ом при любой длине кабелей все приборы "дружно" показывали КСВ < 1,1.

Причину большого разброса показаний RSM - 600 удалось выяснить при его исследовании. В этом приборе в качестве датчика напряжения используется не емкостный делитель, а понижающий трансформатор напряжения с фиксированным коэффициентом трансформации. Это снимает "проблемы" емкостного делителя, но снижает надежность прибора при измерении больших мощностей (предельная мощность RSM - 600 — всего 200/400 Вт). В его схеме нет подстроечного элемента, поэтому резистор нагрузки токового трансформатора должен быть высокой точности (хотя бы 50±0,5 Ом), а реально был использован резистор сопротивлением 47,4 Ом. После его замены на резистор 49,9 Ом результаты измерений стали значительно лучше — 1,48/1,58. Возможно, с этой же причиной связан большой разброс показаний приборов SX - 100 и KW - 220.

Измерение при несогласованной нагрузке с помощью дополнительного четвертьволнового 50 - омного кабеля — надежный способ проверки качества КСВ - метра. Отметим три момента:

Для такой проверки можно использовать и нагрузку 50 Ом, если включить параллельно ее входу конденсатор, например, в виде небольшого отрезка разомкнутого на конце коаксиального кабеля. Подключение удобно произвести через коаксиальный тройниковый переход. Опытные данные — с отрезком РК50 длиной 28 см на частоте 29 МГц, такая комбинированная нагрузка имела КСВ ? 1,3, а при длине 79 см — КСВ ? ? 2,5 (любую нагрузку подключать к КСВ - метру только 50 - омным кабелем).
Реальный КСВ в линии примерно соответствует среднему от двух отсчитанных значений (с добавочным четвертьволновым кабелем и без него).
При измерении реального антенно-фидерного устройства могут возникнуть трудности, связанные с затеканием тока на внешнюю поверхность оплетки кабеля. При наличии такого тока изменение длины фидера снизу может привести к изменению этого тока, что приведет к изменению нагрузки фидера и реального КСВ. Уменьшить влияние внешнего тока можно, свернув входящий в помещение фидер в виде бухты из 15...20 витков диаметром 15...20 см (защитный дроссель).

Эрнест Гуткин (UT1MA),
г. Луганск, Украина

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.
Информация
Комментировать статьи на сайте возможно только в течении 10 дней со дня публикации.
Наверх